7 research outputs found

    Comparing the impact of power supply voltage on CMOS-and FinFET-based SRAMs in the presence of resistive defects

    Get PDF
    CMOS technology scaling has reached its limit at the 22 nm technology node due to several factors including Process Variations (PV), increased leakage current, Random Dopant Fluctuation (RDF), and mainly the Short-Channel Effect (SCE). In order to continue the miniaturization process via technology down-scaling while preserving system reliability and performance, Fin Field-Effect Transistors (FinFETs) arise as an alternative to CMOS transistors. In parallel, Static Random-Access Memories (SRAMs) increasingly occupy great part of Systems-on-Chips’ (SoCs) silicon area, making their reliability an important issue. SRAMs are designed to reach densities at the limit of the manufacturing process, making this component susceptible to manufacturing defects, including the resistive ones. Such defects may cause dynamic faults during the circuits’ lifetime, an important cause of test escape. Thus, the identification of the proper faulty behavior taking different operating conditions into account is considered crucial to guarantee the development of more suitable test methodologies. In this context, a comparison between the behavior of a 22 nm CMOS-based and a 20 nm FinFET-based SRAM in the presence of resistive defects is carried out considering different power supply voltages. In more detail, the behavior of defective cells operating under different power supply voltages has been investigated performing SPICE simulations. Results show that the power supply voltage plays an important role in the faulty behavior of both CMOS- and FinFET-based SRAM cells in the presence of resistive defects but demonstrate to be more expressive when considering the FinFET-based memories. Studying different operating temperatures, the results show an expressively higher occurrence of dynamic faults in FinFET-based SRAMs when compared to CMOS technology

    Evaluating the Effects of Combined Total Ionizing Dose Radiation and Electromagnetic Interference

    Get PDF
    Although measurement methods for Electromagnetic (EM) immunity and Total Ionizing Dose (TID) radiation are highly standardized, no effort has been made to evaluate the behavior of embedded systems under the combined effects. Considering realistic environment conditions only the measurement of these effects can guarantee reliable embedded systems for critical applications. A configurable platform to evaluate the effects of TID radiation and EM Interference (EMI) on embedded systems is presented. Experiments illustrate the consequences regarding delay and fault occurrence probability as well as current consumption and minimum power supply.Fil: Benfica, Juliano. Pontificia Universidade Católica do Rio Grande do Sul; BrasilFil: Poehls, Leticia M. Bolzani. Pontificia Universidade Católica do Rio Grande do Sul; BrasilFil: Vargas, Fabian. Pontificia Universidade Católica do Rio Grande do Sul; BrasilFil: Lipovetzky, José. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires; ArgentinaFil: Lutenberg, Ariel. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: García, Sebastián E.. Universidad de Buenos Aires; ArgentinaFil: Gatti, Edmundo. Instituto Nacional de Tecnología Industrial; ArgentinaFil: Hernandez, Fernando. Universidad ORT Uruguay; Urugua

    Identification and Rejuvenation of NBTI-Critical Logic Paths in Nanoscale Circuits

    Get PDF
    The Negative Bias Temperature Instability (NBTI) phenomenon is agreed to be one of the main reliability concerns in nanoscale circuits. It increases the threshold voltage of pMOS transistors, thus, slows down signal propagation along logic paths between flip-flops. NBTI may cause intermittent faults and, ultimately, the circuit’s permanent functional failures. In this paper, we propose an innovative NBTI mitigation approach by rejuvenating the nanoscale logic along NBTI-critical paths. The method is based on hierarchical identification of NBTI-critical paths and the generation of rejuvenation stimuli using an Evolutionary Algorithm. A new, fast, yet accurate model for computation of NBTI-induced delays at gate-level is developed. This model is based on intensive SPICE simulations of individual gates. The generated rejuvenation stimuli are used to drive those pMOS transistors to the recovery phase, which are the most critical for the NBTI-induced path delay. It is intended to apply the rejuvenation procedure to the circuit, as an execution overhead, periodically. Experimental results performed on a set of designs demonstrate reduction of NBTI-induced delays by up to two times with an execution overhead of 0.1 % or less. The proposed approach is aimed at extending the reliable lifetime of nanoelectronics

    Evaluation of Single Event Upset Susceptibility of FinFET-based SRAMs with Weak Resistive Defects

    Get PDF
    Fin Field-Effect Transistor (FinFET) technology enables the continuous downscaling of Integrated Circuits (ICs), using the Complementary Metal-Oxide Semiconductor (CMOS) technology in accordance with the More Moore domain. Despite demonstrating improvements on short channel effect and overcoming the growing leakage problem of planar CMOS technology, the continuity of feature size miniaturization tends to increase sensitivity to Single Event Upsets (SEUs) caused by ionizing particles, especially in blocks with higher transistor densities such as Static Random-Access Memories (SRAMs). Variation during the manufacturing process has introduced different types of defects that directly affect the SRAM's reliability, such as weak resistive defects. As some of these defects may cause dynamic faults, which require more than one consecutive operation to sensitize the fault at the logic level, traditional test approaches may fail to detect them, and test escapes may occur. These undetected faults, associated with weak resistive defects, may affect the FinFET-based SRAM reliability during its lifetime. In this context, this paper proposes to investigate the impact of ionizing particles on the reliability of FinFET-based SRAMs in the presence of weak resistive defects. Firstly, a TCAD model of a FinFET-based SRAM cell is proposed allowing the evaluation of the ionizing particle’s impact. Then, SPICE simulations are performed considering the current pulse parameters obtained with TCAD. In this step, weak resistive defects are injected into the FinFET-based SRAM cell. Results show that weak defects can positively or negatively influence the cell reliability against SEUs caused by ionizing particles.Computer EngineeringQuantum & Computer Engineerin

    Evaluating the Impact of Ionizing Particles on FinFET -based SRAMs with Weak Resistive Defects

    No full text
    Fin Field-Effect Transistor (FinFET) technology enables the continuous downscaling of Integrated Circuits (ICs), using the Complementary Metal-Oxide Semiconductor (CMOS) technology in accordance with the More Moore domain. Despite demonstrating improvements on short channel effect and overcoming the growing leakage problem of planar CMOS technology, the continuity of feature size miniaturization allowed by FinFETs tends to increase sensitivity to Single Event Upsets (SEUs) caused by ionizing particles, especially in blocks with higher transistor densities as Static Random-Access Memories (SRAMs). Variation during the manufacturing process has introduced different types of defects that directly affect the SRAM's reliability, such as weak resistive defects. As some of these defects may cause dynamic faults, which require more than one consecutive operation to sensitize the fault at the logic level, traditional test approaches may fail to detect them and test escapes can occur. These undetected faults associated with weak resistive defects may affect the FinFET -based SRAM reliability during the lifetime. In this context, this paper proposes to investigate the impact of ionizing particles on the reliability of FinFET -based SRAMs in the presence of weak resistive defects. Firstly, a TCAD model of a FinFET-based SRAM cell is proposed in order to allow the evaluation of the ionizing particle's impact. Then, SPICE simulations are performed considering the current pulse parameters obtained with TCAD. In this step, weak resistive defects are injected into the FinFET-based SRAM cell. Results show that weak defects may have either a positive or negative influence on the cell reliability against SEUs caused by ionizing particles.Computer EngineeringQuantum & Computer Engineerin

    Identification and Rejuvenation of NBTI-Critical Logic Paths in Nanoscale Circuits

    No full text
    The Negative Bias Temperature Instability (NBTI) phenomenon is agreed to be one of the main reliability concerns in nanoscale circuits. It increases the threshold voltage of pMOS transistors, thus, slows down signal propagation along logic paths between flip-flops. NBTI may cause intermittent faults and, ultimately, the circuit’s permanent functional failures. In this paper, we propose an innovative NBTI mitigation approach by rejuvenating the nanoscale logic along NBTI-critical paths. The method is based on hierarchical identification of NBTI-critical paths and the generation of rejuvenation stimuli using an Evolutionary Algorithm. A new, fast, yet accurate model for computation of NBTI-induced delays at gate-level is developed. This model is based on intensive SPICE simulations of individual gates. The generated rejuvenation stimuli are used to drive those pMOS transistors to the recovery phase, which are the most critical for the NBTI-induced path delay. It is intended to apply the rejuvenation procedure to the circuit, as an execution overhead, periodically. Experimental results performed on a set of designs demonstrate reduction of NBTI-induced delays by up to two times with an execution overhead of 0.1 % or less. The proposed approach is aimed at extending the reliable lifetime of nanoelectronics
    corecore